Ensemble methods for multi-label classification
نویسندگان
چکیده
منابع مشابه
Ensemble Methods for Multi-label Classification
Ensemble methods have been shown to be an effective tool for solving multi-label classification tasks. In the RAndom k-labELsets (RAKEL) algorithm, each member of the ensemble is associated with a small randomly-selected subset of k labels. Then, a single label classifier is trained according to each combination of elements in the subset. In this paper we adopt a similar approach, however, inst...
متن کاملEfficient Methods for Multi-label Classification
As a generalized form of multi-class classification, multilabel classification allows each sample to be associated with multiple labels. This task becomes challenging when the number of labels bulks up, which demands a high efficiency. Many approaches have been proposed to address this problem, among which one of the main ideas is to select a subset of labels which can approximately span the or...
متن کاملFully Associative Ensemble Learning for Hierarchical Multi-Label Classification
In Hierarchical Multi-label Classification (HMC), rich hierarchical information is used to improve classification performance. Global approaches learn a single model for the whole class hierarchy [3, 6]. Local approaches introduce hierarchical information to the local prediction results of all the local classifiers to obtain the global prediction results for all the nodes [2, 5]. In this paper,...
متن کاملEnsemble of Neural Networks for Multi-label Document Classification
This paper deals with multi-label document classification using an ensemble of neural networks. The assumption is that different network types can keep complementary information and that the combination of more neural classifiers will bring higher accuracy. We verify this hypothesis by an error analysis of the individual networks. One contribution of this work is thus evaluation of several netw...
متن کاملEnsemble of k-Labelset Classifiers for Multi-label Image Classification
In the real world, images always have several visual objects instead of only one, which makes it difficult for traditional object recognition methods to deal with them. In this paper, we propose an ensemble method for multi-label image classification. First, we construct an ensemble of k-labelset classifiers. A voting technique is then employed to make predictions for images based on the create...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Expert Systems with Applications
سال: 2014
ISSN: 0957-4174
DOI: 10.1016/j.eswa.2014.06.015